The determinant of matrix \(\begin{pmatrix} x & 1 & 0 \\ 1-x & 2 & 3 \\ 1 & 1+x & 4\end{pmatrix}\) in terms of x is

A.

-3x2 - 17

B.

-3x2 + 9x - 1

C.

3x2 + 17

D.

3x2 - 9x + 5

Correct answer is B

\(\begin{vmatrix} x & 1 & 0 \\ 1-x & 2 & 3 \\ 1 & 1+x & 4\end{vmatrix}\) = x\(\begin{vmatrix}2 & 3 \\ 1+x & 4\end{vmatrix}\) - \(\begin{vmatrix}1-x & 3 \\ 1 & 4\end{vmatrix}\) = 0

= x[8 - 3(1 + x)] - [4(1 - x)-3] - 0 = x[5 - 3x] - [1 - 4x]

= 5x - 3x2 -1 + 4x

= -3x2 + 9X - 1