\(\frac{15}{16}\)
\(\frac{11}{16}\)
\(\frac{49}{50}\)
\(3\frac{1}{5}\)
Correct answer is B
\(\frac{1}{2} + (\frac{3}{4} \text{ of } \frac{2}{5}) \div 1\frac{3}{5}\)
= \(\frac{1}{2} + (\frac{3}{4} \times \frac{2}{5}) \div \frac{8}{5}\)
= \(\frac{1}{2} + \frac{3}{10} \div \frac{8}{5}\)
= \(\frac{1}{2} + (\frac{3}{10} \times \frac{5}{8})\)
= \(\frac{1}{2} + \frac{3}{16}\)
= \(\frac{11}{16}\)