Evaluate \(\int_{0} ^{\frac{\pi}{2}} \sin x \mathrm d x\)
-2
2
1
-1
Correct answer is C
\(\int_{0} ^{\frac{\pi}{2}} \sin x \mathrm d x\)
= \(- \cos x |_{0} ^{\frac{\pi}{2}\)
= \(- \cos (\frac{\pi}{2}) - (- \cos 0)\)
= \(0 + 1\)
= 1
Integrate \(\frac{1 + x}{x^{3}} \mathrm d x\)
\(2x^{2} - \frac{1}{x} + k\)
\(-\frac{1}{2x^{2}} - \frac{1}{x} + k\)
\(-\frac{x^{2}}{2} - \frac{1}{x} + k\)
\(x^{2} - \frac{1}{x} + k\)
Correct answer is B
\(\int \frac{1 + x}{x^{3}} \mathrm d x\)
= \(\int (\frac{1}{x^{3}} + \frac{x}{x^{3}}) \mathrm d x\)
= \(\int (x^{-3} + x^{-2}) \mathrm d x\)
= \(\frac{-1}{2x^{2}} - \frac{1}{x} + k\)
If \(\tan \theta = \frac{3}{4}\), find the value of \(\sin \theta + \cos \theta\).
\(1\frac{1}{3}\)
\(1\frac{2}{3}\)
\(1\frac{3}{5}\)
\(1\frac{2}{5}\)
Correct answer is D
\(\tan \theta = \frac{opp}{adj} = \frac{3}{4}\)
\(hyp^{2} = opp^{2} + adj^{2}\)
\(hyp = \sqrt{3^{2} + 4^{2}}\)
= 5
\(\sin \theta = \frac{3}{5}; \cos \theta = \frac{4}{5}\)
\(\sin \theta + \cos \theta = \frac{3}{5} + \frac{4}{5}\)
= \(\frac{7}{5} = 1\frac{2}{5}\)
In triangle PQR, q = 8 cm, r = 6 cm and cos P = \(\frac{1}{12}\). Calculate the value of p.
\(\sqrt{108}\) cm
9 cm
\(\sqrt{92}\) cm
10 cm
Correct answer is C
Using the cosine rule, we have
\(p^{2} = q^{2} + r^{2} - 2qr \cos P\)
\(p^{2} = 8^{2} + 6^{2} - 2(8)(6)(\frac{1}{12})\)
= \(64 + 36 - 8\)
\(p^{2} = 92 \therefore p = \sqrt{92} cm\)
Find the equation of the perpendicular bisector of the line joining P(2, -3) to Q(-5, 1)
8y + 14x + 13 = 0
8y - 14x + 13 = 0
8y - 14x - 13 = 0
8y + 14x - 13 = 0
Correct answer is C
Given P(2, -3) and Q(-5, 1)
Midpoint = \((\frac{2 + (-5)}{2}, \frac{-3 + 1}{2})\)
= \((\frac{-3}{2}, -1)\)
Slope of the line PQ = \(\frac{1 - (-3)}{-5 - 2}\)
= \(-\frac{4}{7}\)
The slope of the perpendicular line to PQ = \(\frac{-1}{-\frac{4}{7}}\)
= \(\frac{7}{4}\)
The equation of the perpendicular line: \(y = \frac{7}{4}x + b\)
Using a point on the line (in this case, the midpoint) to find the value of b (the intercept).
\(-1 = (\frac{7}{4})(\frac{-3}{2}) + b\)
\(-1 + \frac{21}{8} = \frac{13}{8} = b\)
\(\therefore\) The equation of the perpendicular bisector of the line PQ is \(y = \frac{7}{4}x + \frac{13}{8}\)
\(\equiv 8y = 14x + 13 \implies 8y - 14x - 13 = 0\)