JAMB Mathematics Past Questions & Answers - Page 38

186.

A binary operation x is defined by a x b = a\(^b\). If a x 2 = 2 - a, find the possible values of a?

A.

1, -2

B.

2, -1

C.

2, -2

D.

1, -1

Correct answer is A

a = b = a\(^2\)

a + 2 = a\(^2\).....(i)

a + 2 = 2 - a..............(ii) 

a\(^2\) = 2 - a 

a\(^2\)+ a - 2 = a\(^2\) + a - 2 = 0

= (a + 2)(a - 1) = 0

a = 1 or - 2

187.

Find the value of x if \(\frac{\sqrt{2}}{x + \sqrt{2}}\) = \(\frac{1}{x - \sqrt{2}}\) 

A.

3\(\sqrt{2}\) + 4

B.

3\(\sqrt{2}\) - 4

C.

3 - 2\(\sqrt{2}\)

D.

4 + 2\(\sqrt{2}\)

Correct answer is A

\(\frac{\sqrt{2}}{x + 2}\) = x - \(\frac{1}{\sqrt{2}}\)

x\(\sqrt{2}\) (x - \(\sqrt{2}\)) = x + \(\sqrt{2}\) (cross multiply)

x\(\sqrt{2}\) - 2 = x + \(\sqrt{2}\) 

= x\(\sqrt{2}\) - x 

= 2 + \(\sqrt{2}\)

x (\(\sqrt{2}\) - 1) = 2 + \(\sqrt{2}\)

= \(\frac{2 + \sqrt{2}}{\sqrt{2} - 1} \times \frac{\sqrt{2} + 1}{\sqrt{2} + 1}\)

x = \(\frac{2 \sqrt{2} + 2 + 2 + \sqrt{2}}{2 - 1}\) 

= 3\(\sqrt{2}\) + 4 

188.

If x is positive real number, find the range of values for which \(\frac{1}{3x}\) + \(\frac{1}{2}\)x = \(\frac{2 + 3x}{6x}\) > \(\frac{1}{4x}\) 

A.

x > -\(\frac{1}{6}\)

B.

x > 0

C.

0 < x < 6

D.

0 < x <\(\frac{1}{6}\)

Correct answer is A

\(\frac{1}{3x}\) + \(\frac{1}{2}\)x = \(\frac{2 + 3x}{6x}\) > \(\frac{1}{4x}\) 

= 4(2 + 3x) > 6x = 12x\(^2\) - 2x = 0

= 2x(6x - 1) > 0 = x(6x - 1) > 0

Case 1 (-, -) = x < 0, 6x - 1 > 0

= x < 0, x < \(\frac{1}{6}\) (solution) 

Case 2 (+, +) = x > 0, 6x - 1 > 0 = x > 0

x > \(\frac{1}{6}\)

Combining solutions in cases (1) and (2) 

= x > 0, x < \(\frac{1}{6}\) = 0 < x < \(\frac{1}{6}\) 

189.

The pie chart shows the income of a civil servant in month. If his monthly income is N6,000. Find his monthly basic salary. 

A.

N2,050

B.

N2,600

C.

N3,100

D.

N3,450

Correct answer is A

360\(^o\) - (60\(^o\) + 60\(^o\) + 67 + 50 = 237\(^o\)) 

360\(^o\) - 237 = 130\(^o\) 

B. Salary = \(\frac{123}{360} X \frac{N6000}{1}\) 

= N2,050

190.

Find the simple interest rate percent annum at which N1000 accumulates to N1240 in 3 years. 

A.

6%

B.

8%

C.

10%

D.

12%

Correct answer is B

I = \(\frac{PRT}{100}\) = 1 = 1240 - 1000 = 240

R = \(\frac{240 \times 100}{100 \times 3}\) = 8%