If log318 + log33 - log3x = 3, Find x.
1
2
0
3
Correct answer is B
log\(_{3}^{18}\) + log\(_{3}^{3}\) - log\(_{3}^{x}\) = 3
log\(_{3}^{18}\) + log\(_{3}^{3}\) - log\(_{3}^{x}\) = 3log33
log\(_{3}^{18}\) + log\(_{3}^{3}\) - log\(_{3}^{x}\) = log333
log3(\(\frac{18 \times 3}{X}\)) = log333
\(\frac{18 \times 3}{X}\) = 33
18 x 3 = 27 x X
x = \(\frac{18 \times 3}{27}\)
= 2
Simplify \((\frac{16}{81})^{\frac{1}{4}} \div (\frac{9}{16})^{-\frac{1}{2}}\)
\(\frac{2}{3}\)
\(\frac{1}{2}\)
\(\frac{8}{9}\)
\(\frac{1}{3}\)
Correct answer is B
\((\frac{16}{81})^{\frac{1}{4}} \div (\frac{9}{16})^{-\frac{1}{2}}\)
\((\frac{16}{81})^{\frac{1}{4}} \div (\frac{16}{9})^{\frac{1}{2}}\)
\((\frac{2^4}{3^4})^{\frac{1}{4}} \div (\frac{4^2}{3^2})^{\frac{1}{2}}\)
\(\frac{2^{4 \times \frac{1}{4}}}{3^{4 \times \frac{1}{4}}} \div \frac{4^{2 \times \frac{1}{2}}}{3^{2 \times \frac{1}{2}}}\)
\(\frac{2}{3} \div \frac{4}{3}\)
\(\frac{2}{3} \times \frac{3}{4}\)
\(\frac{2}{4}\)
\(\frac{1}{2}\)
If the numbers M, N, Q are in the ratio 5:4:3, find the value of \(\frac{2N - Q}{M}\)
2
3
1
4
Correct answer is C
M:N:Q == 5:4:3
i.e M = 5, N = 4, Q = 3
Substituting values into equation, we have...
\(\frac{2N - Q}{M}\)
= \(\frac{2(4) - 3}{5}\)
= \(\frac{8 - 3}{5}\)
= \(\frac{5}{5}\)
= 1
A man invested N5,000 for 9 months at 4%. What is the simple interest?
N150
N220
N130
N250
Correct answer is A
S.I. = \(\frac{P \times R \times T}{100}\)
If T = 9 months, it is equivalent to \(\frac{9}{12}\) years
S.I. = \(\frac{5000 \times 4 \times 9}{100 \times 12}\)
S.I. = N150
\(5\frac{2}{3}\)
30
\(4\frac{1}{3}\)
50
Correct answer is D
\(\frac{3\frac{2}{3} \times \frac{5}{6} \times \frac{2}{3}}{\frac{11}{15} \times \frac{3}{4} \times \frac{2}{27}}\)
\(\frac{\frac{11}{3} \times \frac{5}{6} \times \frac{2}{3}}{\frac{11}{15} \times \frac{3}{4} \times \frac{2}{27}}\)
\(\frac{110}{54} \div \frac{66}{1620}\)
50