JAMB Mathematics Past Questions & Answers - Page 320

1,596.

If \(\begin{vmatrix} 2 & 3 \\ 5 & 3x \end{vmatrix}\) = \(\begin{vmatrix} 4 & 1 \\ 3 & 2x \end{vmatrix}\), find the value of x. 

A.

-6

B.

6

C.

-12

D.

12

Correct answer is A

\(\begin{vmatrix} 2 & 3 \\ 5 & 3x \end{vmatrix}\) = \(\begin{vmatrix} 4 & 1 \\ 3 & 2x \end{vmatrix}\)

(2 x 3x) - (5 x 3) = (4 x 2x) - (3 x 1)

6x - 15 = 8x - 3

6x - 8x = 15 - 3

-2x = 12

x = \(\frac{12}{-2}\)

= -6

1,597.

A binary operation \(\oplus\) om real numbers is defined by x \(\oplus\) y = xy + x + y for two real numbers x and y. Find the value of 3 \(\oplus\) - \(\frac{2}{3}\).

A.

- \(\frac{1}{2}\)

B.

\(\frac{1}{3}\)

C.

-1

D.

2

Correct answer is B

N + Y = XY + X + Y

3 + -\(\frac{2}{3}\) = 3(- \(\frac{2}{3}\)) + 3 + (- \(\frac{2}{3}\))

= -2 + 3 -\(\frac{2}{3}\)

= \(\frac{1 - 2}{1 - 3}\)

= \(\frac{1}{3}\)

1,598.

The seconds term of a geometric series is 4 while the fourth term is 16. Find the sum of the first five terms

A.

60

B.

62

C.

54

D.

64

Correct answer is B

T2 = 4, T4 = 16

Tx = arn-1

T2 = ar2-1 = 4 i.e. ar3 = 16, i.e. ar = 4

T4 = ar4-1

therefore, \(\frac{T_4}{T_r}\) = \(\frac{ar^3}{ar}\) = \(\frac{16}{4}\)

r2 = 4 and r = 2

but ar = 4

a = \(\frac{4}{r}\) = \(\frac{4}{2}\)

a = 2

Sn = \(\frac{a(r^n - 1)}{r - 1}\)

S5 = \(\frac{2(2^5 - 1)}{2 - 1}\)

= \(\frac{2(32 - 1)}{2 - 1}\)

= 2(31)

= 62

1,599.

Find the sum of the first 18 terms of the series 3, 6, 9,..., 36.

A.

505

B.

513

C.

433

D.

635

Correct answer is B

3, 6, 9,..., 36.

a = 3, d = 3, i = 36, n = 18

Sn = \(\frac{n}{2}\) [2a + (n - 1)d

S18 = \(\frac{18}{2}\) [2 x 3 + (18 - 1)3]

= 9[6 + (17 x 3)]

= 9 [6 + 51] = 9(57)

= 513

1,600.

Solve the inequality x2 + 2x > 15.

A.

x < -3 or x > 5

B.

-5 < x < 3

C.

x < 3 or x > 5

D.

x > 3 or x < -5

Correct answer is B

x2 + 2x > 15

x2 + 2x - 15 > 0

(x2 + 5x) - (3x - 15) > 0

x(x + 5) - 3(x + 5) >0

(x - 3)(x + 5) > 0

therefore, x = 3 or -5

i.e. x< 3 or x > -5