JAMB Mathematics Past Questions & Answers - Page 319

1,591.

A solid metal cube of side 3 cm is placed in a rectangular tank of dimension 3, 4 and 5 cm. What volume of water can the tank now hold

A.

48 cm3

B.

33 cm3

C.

60 cm3

D.

27 cm3

Correct answer is B

Volume of cube = L3

33 = 27cm3

volume of rectangular tank = L x B X h

= 3 x 4 x 5

= 60cm3

volume of H2O the tank can now hold

= volume of rectangular tank - volume of cube

= 60 - 27

= 33cm3

1,592.

A chord of circle of radius 7cm is 5cm from the centre of the circle.What is the length of the chord?

A.

4√6 cm

B.

3√6 cm

C.

6√6 cm

D.

2√6 cm

Correct answer is A

From Pythagoras theorem

|OA|2 = |AN|2 + |ON|2

72 = |AN|2 + (5)2

49 = |AN|2 + 25

|AN|2 = 49 - 25 = 24

|AN| = \(\sqrt {24}\)

= \(\sqrt {4 \times 6}\)

= 2√6 cm

|AN| = |NB| (A line drawn from the centre of a circle to a chord, divides the chord into two equal parts)

|AN| + |NB| = |AB|

2√6 + 2√6 = |AB|

|AB| = 4√6 cm

1,593.

What is the size of each interior angle of a 12-sided regular polygon?

A.

120o

B.

150o

C.

30o

D.

180o

Correct answer is B

Interior angle = (n - 2)180

but, n = 12

= (12 -2)180

= 10 x 180

= 1800

let each interior angle = x

x = \(\frac{(n - 2)180}{n}\)

x = \(\frac{1800}{12}\)

= 150o

1,594.

The inverse of matrix N = \(\begin{vmatrix} 2 & 3 \\
1 & 4\end{vmatrix}\) is

A.

\(\frac{1}{5}\) \(\begin{vmatrix} 2 & 1 \\ 3 & 4\end{vmatrix}\)

B.

\(\frac{1}{5}\) \(\begin{vmatrix} 4 & -3 \\ -1 & 2\end{vmatrix}\)

C.

\(\frac{1}{5}\) \(\begin{vmatrix} 2 & -1 \\ -3 & 4\end{vmatrix}\)

D.

\(\frac{1}{5}\) \(\begin{vmatrix} 4 & 3 \\ 1 & 2\end{vmatrix}\)

Correct answer is B

N = [2 3]

N-1 = \(\frac{adj N}{|N|}\)

adj N = \(\begin{vmatrix} 4 & -3 \\ -1 & 2 \end{vmatrix}\)

|N| = (2 x4) - (1 x 3)

= 8 - 3

=5

N-1 = \(\frac {1}{5}\) \(\begin{vmatrix} 4 & -3 \\ -1 & 2 \end{vmatrix}\)

1,595.

Evaluate \(\begin{vmatrix} 4 & 2 & -1 \\ 2 & 3 & -1 \\ -1 & 1 & 3 \end{vmatrix}\)

A.

25

B.

45

C.

15

D.

55

Correct answer is A

\(\begin{vmatrix} 4 & 2 & -1 \\ 2 & 3 & -1 \\ -1 & 1 & 3 \end{vmatrix}\)

4 \(\begin{vmatrix} 3 & -1 \\ 1 & 3 \end{vmatrix}\) -2 \(\begin{vmatrix} 2 & -1 \\ -1 & 3\end{vmatrix}\) -1 \(\begin{vmatrix} 2 & 3 \\ -1 & 1 \end{vmatrix}\)

4[(3 x 3) - (-1 x 1)] -2 [(2x 3) - (-1 x -1)] -1 [(2 x 1) - (-1 x 3)]

= 4[9 + 1] -2 [6 - 1] -1 [2 + 3]

= 4(10) - 2(5) - 1(5)

= 40 - 10 - 5

= 25