WAEC Mathematics Past Questions & Answers - Page 6

26.

A number is chosen at random from 40 and 50 inclusive. Find the probability that the number is prime.

A.

\(\frac{8}{11}\)

B.

\(\frac{3}{11}\)

C.

\(\frac{4}{11}\)

D.

\(\frac{5}{11}\)

Correct answer is B

Total numbers from 40 to 50 inclusive = 11 (40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50).

Prime numbers between 40 and 50 (inclusive) are 41, 43, and 47.

There are 3 prime numbers in this range.

therefore, Pr(prime numbers) = \(\frac{3}{11}\)

27.

Arrange the following in ascending order of magnitude \(110_{two}, 31_{eight}, 42_{five}\)

A.

\(110_{two}, 31_{five}, 42_{eight}\)

B.

\(42_{five}, 110_{two}, 31_{eight}\)

C.

\(42_{five}, 31_{eight}, 110_{two}\)

D.

\(110_{two}, 42_{five}, 31_{eight}\)

Correct answer is D

Converting each number to base 10
\(110_{two} = 1 × 2^2 + 1 × 2^1 + 0 × 2^0\)
= 1 × 4 + 1 × 2 + 0 × 1
= 4 + 2 + 0
= \(6_{ten}\)
\(31_{eight} = 3 × 8^1 + 1 × 8^0\)
= 3 × 8 + 1 × 1
= 24 + 1
= \(25_{ten}\)
\(42_{five} = 4 × 5^1 + 2 × 5^0\)
= 4 × 5 + 2 × 1
= 20 + 2
= \(22_{ten}\)
Hence, \(31_{eight} > 42_{five} > 110_{two}\)
In ascending order, \(110_{two}, 42_{five}, 31_{eight}\)

28.

An empty cylindrical tank is 140 cm in diameter. If 200 litres of water was poured into the tank. Calculate, correct to the nearest centimeter, the height of the water in the tank. (\(Take \pi = \frac{22}{7})\)
 

A.

91cm

B.

7cm

C.

13cm

D.

57cm

Correct answer is C

given that diameter = 140cm ⇒radius = 70cm, volume of cylinder = 200litres = \(200,000cm^3\)

volume of cylinder = base area times height = \(\pi r^2h\)

\( 200,000cm^3 = \frac{22}{7} \times 70 \times 70 \times h\)

\(200,000 = \frac{107,800h}{7}\)

cross multiply

1,400,000 = 107,800h 

\( h = \frac{1,400,000}{107,800}\)

   = 13cm (to the nearest cm).

29.

make x the subject of the relation \(y = \frac{ax^3 - b}{3z}\)

A.

x = \(\sqrt[3] \frac{ax^3 - b}{3z}\)

B.

x = \(\sqrt[3] \frac{3yz - b}{a}\)

C.

x = \(\sqrt[3] \frac{3yz + b}{a}\)

D.

x = \(\sqrt[3] \frac{3yzb}{a}\)

Correct answer is C

\(y = \frac{ax^3 - b}{3z}\)

cross multiply

\(ax^3 - b\) = 3yz

\(ax^3\) = 3yz + b 

divide both sides by a 

\(x^3 = \frac{3yz + b}{a}\)

take cube root of both sides

therefore, x = \(\sqrt[3] \frac{3yz + b}{a}\)

30.

m:n = \(2\frac{1}{3} : 1\frac{1}{5}\) and n : q = \(1\frac{1}{2} : 1\frac{1}{3}\), find q : m.

A.

35 : 18

B.

16 : 35

C.

18 : 35

D.

35 : 16

Correct answer is B

m:n = \(2\frac{1}{3} : 1\frac{1}{5}\) = m : n = \(\frac{7}{3} : \frac{6}{5}\)

\(\frac{7}{3} : \frac{6}{5}\) =  \(\frac{7}{3} \div \frac{6}{5}\)

\(\frac{m}{n}\) =  \(\frac{7}{3} \times \frac{5}{6}\)

\(\frac{m}{n}\) =  \(\frac{35}{18}\) = m =  \(\frac{35n}{18}\)

n : q = \(1\frac{1}{2} : 1\frac{1}{3}\) =  \(\frac{3}{2} : \frac{4}{3}\)

\(\frac{n}{q}\) =   \(\frac{3}{2} \times\frac{3}{4}\)

\(\frac{n}{q}\) =  \(\frac{9}{8}\) = q =  \(\frac{8n}{9}\) 

q : m =   \(\frac{8n}{9}\) :   \(\frac{35n}{18}\)

\(\frac{q}{m}\) =  \(\frac{8n}{9} \div \frac{35n}{18}\)

\(\frac{q}{m}\) =  \(\frac{8n}{9}\times\frac{18}{35n}\)

 =\(\frac{q}{m} = \frac{16}{35}\) = q : m = 16 : 35