\(\frac{8}{11}\)
\(\frac{3}{11}\)
\(\frac{4}{11}\)
\(\frac{5}{11}\)
Correct answer is B
Total numbers from 40 to 50 inclusive = 11 (40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50).
Prime numbers between 40 and 50 (inclusive) are 41, 43, and 47.
There are 3 prime numbers in this range.
therefore, Pr(prime numbers) = \(\frac{3}{11}\)
Arrange the following in ascending order of magnitude \(110_{two}, 31_{eight}, 42_{five}\)
\(110_{two}, 31_{five}, 42_{eight}\)
\(42_{five}, 110_{two}, 31_{eight}\)
\(42_{five}, 31_{eight}, 110_{two}\)
\(110_{two}, 42_{five}, 31_{eight}\)
Correct answer is D
Converting each number to base 10
\(110_{two} = 1 × 2^2 + 1 × 2^1 + 0 × 2^0\)
= 1 × 4 + 1 × 2 + 0 × 1
= 4 + 2 + 0
= \(6_{ten}\)
\(31_{eight} = 3 × 8^1 + 1 × 8^0\)
= 3 × 8 + 1 × 1
= 24 + 1
= \(25_{ten}\)
\(42_{five} = 4 × 5^1 + 2 × 5^0\)
= 4 × 5 + 2 × 1
= 20 + 2
= \(22_{ten}\)
Hence, \(31_{eight} > 42_{five} > 110_{two}\)
In ascending order, \(110_{two}, 42_{five}, 31_{eight}\)
91cm
7cm
13cm
57cm
Correct answer is C
given that diameter = 140cm ⇒radius = 70cm, volume of cylinder = 200litres = \(200,000cm^3\)
volume of cylinder = base area times height = \(\pi r^2h\)
\( 200,000cm^3 = \frac{22}{7} \times 70 \times 70 \times h\)
\(200,000 = \frac{107,800h}{7}\)
cross multiply
1,400,000 = 107,800h
\( h = \frac{1,400,000}{107,800}\)
= 13cm (to the nearest cm).
make x the subject of the relation \(y = \frac{ax^3 - b}{3z}\)
x = \(\sqrt[3] \frac{ax^3 - b}{3z}\)
x = \(\sqrt[3] \frac{3yz - b}{a}\)
x = \(\sqrt[3] \frac{3yz + b}{a}\)
x = \(\sqrt[3] \frac{3yzb}{a}\)
Correct answer is C
\(y = \frac{ax^3 - b}{3z}\)
cross multiply
\(ax^3 - b\) = 3yz
\(ax^3\) = 3yz + b
divide both sides by a
\(x^3 = \frac{3yz + b}{a}\)
take cube root of both sides
therefore, x = \(\sqrt[3] \frac{3yz + b}{a}\)
m:n = \(2\frac{1}{3} : 1\frac{1}{5}\) and n : q = \(1\frac{1}{2} : 1\frac{1}{3}\), find q : m.
35 : 18
16 : 35
18 : 35
35 : 16
Correct answer is B
m:n = \(2\frac{1}{3} : 1\frac{1}{5}\) = m : n = \(\frac{7}{3} : \frac{6}{5}\)
\(\frac{7}{3} : \frac{6}{5}\) = \(\frac{7}{3} \div \frac{6}{5}\)
\(\frac{m}{n}\) = \(\frac{7}{3} \times \frac{5}{6}\)
\(\frac{m}{n}\) = \(\frac{35}{18}\) = m = \(\frac{35n}{18}\)
n : q = \(1\frac{1}{2} : 1\frac{1}{3}\) = \(\frac{3}{2} : \frac{4}{3}\)
\(\frac{n}{q}\) = \(\frac{3}{2} \times\frac{3}{4}\)
\(\frac{n}{q}\) = \(\frac{9}{8}\) = q = \(\frac{8n}{9}\)
q : m = \(\frac{8n}{9}\) : \(\frac{35n}{18}\)
\(\frac{q}{m}\) = \(\frac{8n}{9} \div \frac{35n}{18}\)
\(\frac{q}{m}\) = \(\frac{8n}{9}\times\frac{18}{35n}\)
=\(\frac{q}{m} = \frac{16}{35}\) = q : m = 16 : 35